Точечные и вероятностные стохастические модели. Стохастические сетевые модели. В теории хаоса

ВВЕДЕНИЕ

Математические модели и методы моделирования экономических объектов являются необходимыми для управления экономическими объектами. Моделирование экономических систем актуально для специалистов по управлению экономическими объектами, особенно для тех, кто связан с созданием автоматизированных систем управления экономическими объектами.

Объектами исследования моделирования экономических систем являются любые экономические объекты. Математические модели экономических систем должны удовлетворять требованиям: адекватности, универсальности, полноты и простоты, должны соответствовать расчетным практическим формулам. Требованиям, предъявляемым к математическим моделям, наиболее соответствуют детерминированные, динамические, полные, теоретические непрерывные и дискретные модели.

История моделирования экономических систе м – это история имитационных математических моделей, которые лишь частично удовлетворяют предъявляемым требованиям и не обладают познавательными функциями. Неудовлетворенность степенью выполнения предъявляемых требований составляет основную проблему моделирования экономики. Решение этой проблемы моделирования экономики связано с развитием и использованием функциональных математических моделей и методов моделирования экономических объектов. Особенностью функционального моделирования является то, что оно основано на фундаментальных законах функционирования экономики, а преимуществом то, что функциональные модели в полной степени удовлетворяют предъявляемым требованиям и обладают высокими познавательными функциями. Поэтому в истории моделирования экономики можно выделить следующие этапы:

Этап формирования и применения имитационных математических моделей экономических объектов на основе отдельных закономерностей экономики;

Этап формирования и применения функциональных математических моделей экономических объектов на основе законов экономических систем.

Современные представления функционального моделирования экономических объектов выражены в законах функционирования, функциональных моделях и методами моделирования экономических систем. Овладение функциональн ым моделировани ем обеспечивает формирование у специалистов теоретических основ моделирования экономических систем, которые способствуют повышению качества моделирования поведения экономических объектов, создания автоматизированных систем управления экономическими объектами и повышению эффективности управления экономическими объектами.

Цель работы - ознакомление с математическими моделями и методами моделирования экономических систем, развитие умений применять эти знания на практике.

Задачи работы :

Рассмотреть стохастические модели в экономике ;

Рассмотреть практическое применение стохастических моделей в экономике ;

- развитие умений применять модели и метод ы моделирования экономических систем на практике .

1 СТОХАСТИЧЕСКИЕ МОДЕЛИ В ЭКОНОМИКЕ

В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. В общем виде модель можно определить как условный образ (упрощенное изображение) реального объекта (процесса), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием . Например, модель самолета продувают в аэродинамической трубе, вместо того, чтобы испытывать настоящий самолет – это дешевле. При теоретическом исследовании атомного ядра физики представляют его в виде капли жидкости, имеющей поверхностное натяжение, вязкость и т.п. Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процесса). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процесса), хотя на самом деле действительность значительно содержательнее и богаче.

Модель – это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте.

Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть оригиналом), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

Подобие между моделируемым объектом и моделью может быть физическое, структурное, функциональное, динамическое, вероятностное и геометрическое. При физическом подобии объект и модель имеет одинаковую или сходную физическую природу. Структурное подобие предполагает наличие сходства между структурой объекта и структурой модели. При выполнении объектом и моделью под определенным воздействием сходных функций наблюдается функциональное подобие. При наблюдении за последовательно изменяющимися состояниями объекта и модели отмечается динамическое подобие. Вероятностное подобие отмечается при наличии сходства между процессами вероятностного характера в объекте и модели. Геометрическое подобие имеет место при сходстве пространственных характеристик объекта и модели.

На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей.

Словесная или монографическая модель представляет собой словесное описание объекта, явления или процесса. Очень часто она выражается в виде определения, правила, теоремы, закона или их совокупности.

Графическая модель создается в виде рисунка, географической карты или чертежа. Например, зависимость между ценой и спросом может быть выражена в виде графика, на оси ординат, которого отложен спрос (D ), а на оси абсцисс – цена (Р ). Кривая нам наглядно иллюстрирует, что с ростом цены спрос падает, и наоборот.

Физические или вещественные модели создаются для конструирования пока еще несуществующих объектов. Создать модель самолета или ракеты для проверки ее аэродинамических свойств значительно проще и экономически целесообразнее, чем изучать эти свойства на реальных объектах.

При моделировании используется аналогия между объектом –оригиналом и его моделью. Аналогии бывают следующими:

  1. внешняя аналогия (модель самолета, корабля, микрорайона, выкройка);
  2. структурная аналогия (водопроводная сеть и электросеть моделируются с помощью графов, отражающих все связи и пересечения, но не длины отдельных трубопроводов);
  3. динамическая аналогия (по поведению системы) - маятник моделирует электрический колебательный контур.

Математические модели относятся ко второму и третьему типу. Смысл математического моделирования заключается в том, что эксперименты проводятся не с реальной физической моделью объекта, а с его описанием. Для них свойственно то, что они реализуются с использованием информационных технологий. Содержанием любой экономико-математической модели является выраженная в формально-математических соотношениях экономическая сущность условий задачи и поставленной цели. В модели экономическая величина представляется математическим соотношением, но не всегда математическое соотношение является экономическим. "Экономико-математическая модель представляет собой концентрированное выражение общих взаимосвязей и закономерностей экономического явления в математической форме" (академик В.С. Немчинов).

Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей также не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.

По степени агрегирования объектов моделирования различают модели:

    • микроэкономические;
    • одно-, двухсекторные (одно-, двухпродуктовые);
    • многосекторные (многопродуктовые);
    • макроэкономические;
    • глобальные.

    По учету фактора времени модели подразделяются на:

    • статические;
    • динамические.

В статических моделях экономическая система описана в статике, применительно к одному определенному моменту времени. Это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени. Динамические модели описывают экономическую систему в развитии.

По цели создания и применения различают модели:

    • балансовые;
    • эконометрические;
    • оптимизационные;
    • сетевые;
    • систем массового обслуживания;
    • имитационные (экспертные).

По учету фактора неопределенности модели подразделяются на:

    • детерминированные (с однозначно определенными результатами);
    • стохастические (с различными, вероятностными результатами).

По типу математического аппарата различают модели:

    • линейного и нелинейного программирования;
    • корреляционно-регрессионные;
    • матричные;
    • сетевые;
    • теории игр;
    • теории массового обслуживания и т.д.

Стохастическая модель – такая экономико-математическая модель , в которой параметры , условия функционирования и характеристики состояния моделируемого объекта представлены случайными величинами и связаны стохастическими (т. е. случайными, нерегулярными) зависимостями, либо исходная информация также представлена случайными величинами. Следовательно, характеристики состояния в модели определяются не однозначно, а через законы распределения их вероятностей . Моделируются, например, стохастические процессы в теории массового обслуживания , в сетевом планировании и управлении и в других областях. При построении стохастической модели применяются методы корреляционного и регрессионного анализов , другие статистические методы. Другие названия стохастической модели – недетерминированная, вероятностная модель.

3.1. Математические модели случайных процессов

При проведении научных исследований в производстве и в быту часто встречаются события, которые многократно появляются при одних и тех же условиях, но отличающиеся каждый раз друг от друга. Например, измеряя значение напряжения в сети переменного тока с помощью одного и того же прибора с одинаковой тщательностью, никогда не получим одинаковых данных. Наблюдается случайное рассеивание. Для оценки величины рассеивания вводится вероятность, как мера измерения.

Закономерность рассеивания, выраженная функцией распределения вероятностей, носит общий характер.

Если входные параметры объекта, смена состояний объекта или его выходные параметры описываются случайными распределениями вероятностей, то эти объекты относятся к классу стохастических. При моделировании поведения данных объектов применяется аппарат теории вероятностей, а для идентификации параметров моделей применяется аппарат математической статистики. Рассмотрим виды моделей, которые могут быть применены для описания стохастических объектов.

3.1.1. Распределение случайных событий . Массовые явления или процессы характеризуются многократным повторением при постоянных условиях некоторых опытов (операций и прочее). Абстрагируясь от специальных свойств этих опытов, в теории вероятностей вводится понятие испытания (опыта). Испытанием называется осуществление определенного комплекса условий, который может быть воспроизведен сколь угодно большое число раз. Явления, происходящие при реализации этого комплекса условий (в результате испытания), называются событиями .

Положительное число в отрезке , представляющее собой количественную меру возможности реализации случайного события в испытании, называется его вероятностью. Вероятность появления события А обозначают символом Р(А) , причем 0£Р(А)£ 1. Вероятность понимается как идеальная мера возможности появления события.

Случайная величина рассматривается как функция, аргументом которой служит элементарное случайное событие. Дискретной случайной величиной называется такая, которая может принимать конечное или бесконечное счетное множество значений, например возможны значения x 1 , x 2 , …, x n , … Для каждого события x i определены вероятности P(x i) . Распределение вероятностей дискретной случайной величины, представленное на рис. 3.1, рассматривают как точечное распределение вероятностей.

При непрерывном распределении случайной величины вероятности распределены сплошной полосой по всей оси x или по некоторым ее участкам с определенной плотностью.

Распределение вероятностей носит название теоретического распределения случайной величины.

Интегральная функция распределения вероятностей определяет вероятность того, что случайная величина X меньше значения x

. (3.1)

Пример задания интегральной функции распределения вероятностей приведен на рис. 3.2.

Дифференциальная функция распределения вероятностей (плотность распределения вероятностей) определяет вероятность того, что случайная величина X меньше значения x

. (3.2)

Пример задания дифференциальной функции распределения вероятностей приведен на рис. 3.3.

Совокупность случайных величин X(Q) аргумента Q , образует случайный процесс. Течение случайного процесса описывают некоторой функцией X(Q) , где Q - аргумент функции со значениями из множества Q . Функцию X(Q) , наблюдаемую в некотором опыте, соблюдая определенный комплекс условий, называют выборочной функцией или реализацией случайного процесса.

Если множество Q произвольно, то вместо термина «случайный процесс» применяют термин «случайная функция». Название «случайный процесс» применимо в тех случаях, когда параметр Q интерпретируется как время. Если аргумент случайной функции является пространственной переменной, то функцию называют случайным полем.

Определение. Моделью случайного процесса называют случайную функцию X(Q) , заданную на множестве Q , принимающую действительные значения и описываемую семейством распределений :

, QiÎQ, i=1,2,...,n, n=1,2,...,

которое удовлетворяет условиям согласованности

,

= ,

где i 1 , i 2 ,…, i n , - любая перестановка индексов 1 , 2 ,..., n .

Набор функций называется конечномерными распределениями случайной функции или интегральной функции распределения вероятностей многомерной случайной величины. При n =1 получим одномерное распределение (3.1). Модель многомерного распределения необходима для моделирования многопараметрической случайной величины.

При решении многих задач моделирования приходится оперировать с несколькими случайными функциями. Для того чтобы над ними производить математические операции, недостаточно, чтобы каждая из этих случайных функций была задана в отдельности. Последовательность функций X 1 (Q), X 2 (Q),…, X n (Q) возможно заменить векторной функцией x(Q) , компонентами которой служат случайные функции X i (Q), (i=1,2,…,n) .

Явные выражения для конечномерных функций распределения случайного процесса бывают сложными и неудобными для применения. Поэтому в ряде случаев предпочитают задавать конечномерные распределения их плотностями (дифференциальной функцией распределения вероятностей многомерной случайной величины) или характеристическими функциями.

Если - плотность функций распределения , то

=

= .

Связь интегральной функции распределения вероятностей одномерной случайной величины и ее дифференциальной функцией распределения вероятностей показана формулой

.

Модель системы может быть задана также в виде характеристической функции конечномерного распределения последовательности

X 1 (Q),X 2 (Q), …, X n (Q), Qi³0 >, i=1,n, n=1,2,...,

которая определяется формулой

где M - символ математического ожидания, u 1 ,u 2 ,...,u k - вещественные числа.

Если существует плотность конечномерного распределения, то модель в виде характеристической функции является преобразованием Фурье плотности распределения. Для одномерной случайной величины характеристическая функция определится по формуле

.

3.1.2. Корреляционные функции. Исчерпывающую характеристику модели стохастического объекта в виде случайной функции в широком смысле дает семейство конечномерных распределений. Однако решение многих теоретико-вероятностных задач зависит только от небольшого числа параметров, характеризующих входящие в задачу распределения. Наиболее важными числовыми характеристиками распределений являются их моменты. В теории случайных функций роль моментов распределений играют моментные функции. Рассмотрим модели в виде моментных функций для одномерной случайной величины.

Момент k –го порядка дискретной случайной величины определяется по формуле

.

Для непрерывной случайной величины моментная функция k

.

Рассмотрим модели в виде моментных функций для многомерной случайной величины.

Определение . Модель случайной функции X(Q i), Q i ÎQ в виде моментной функции задается отношением

если математическое ожидание в правой части равенства имеет смысл при всех QiÎQ, i=1,n . Величина q=j 1 +j 2 +...+j n называется порядком моментной функции.

Если известны характеристические функции конечномерного распределения, то моментные функции с целочисленными индексами могут быть найдены с помощью дифференцирования

при u 1 =u 1 =…=u n =0 .

Кроме моментных функций в качестве моделей часто рассматривают центральные моменты функции. Центрированной случайной величиной называется случайная величина . Для непрерывной случайной величины центральная моментная функция k –го порядка определяется по формуле

.

Для многомерной случайной величины центральные моменты функции определятся по формуле

которые являются моментными функциями центрированной случайной функции многих параметров.

Среди моментных функций особое значение имеют функции первых двух порядков, которые могут иметь обозначения:

m(Q)=m 1 (Q 1)=MX(Q),

R 1 (Q 1 ,Q 2)=m 1 (Q 1 ,Q 2)=M{}.

Функции m(Q) называются средним значением или математическим ожиданием, а R 1 (Q 1 ,Q 2) - корреляционной функцией. При Q 1 =Q 2 =Q корреляционная функция дает дисперсию s(Q) величины e(Q), R 1 (Q 1 ,Q 2)=s 2 (Q) .

Величину

называют коэффициентом корреляции случайных величин X(Q 1) и X(Q 2) .

МАТЕМАТИЧЕСКИЕ МОДЕЛИ

2.1. Постановка задачи

Детерминированные модели описывают процессы в детерминированных системах.

Детерминированные системы характеризуются однозначным соответствием (соотношением) между входными и выходными сигналами (процессами).

Если задан входной сигнал такой системы, известны ее характеристика y = F(x), а также ее состояние в начальный момент времени, то значение сигнала на выходе системы в любой момент времени определяется однозначно (рис. 2.1).

Существует два подхода к исследованию физических систем: детерминированный и стохастический.

Детерминированный подход основан на применении детерминированной математической модели физической системы.

Стохастический подход подразумевает использование стохастической математической модели физической системы.

Стохастическая математическая модель наиболее адекватно (достоверно) отображает физические процессы в реальной системе, функцио-нирующей в условиях влияния внешних и внутренних случайных факторов (шумов).

2.2. Случайные факторы (шумы)

Внутренние факторы

1) температурная и временная нестабильность электронныхкомпонентов;

2) нестабильность питающего напряжения;

3) шум квантования в цифровых системах;

4) шумы в полупроводниковых приборах в результате неравномерности процессов генерации и рекомбинации основных носителей заряда;

5) тепловой шум в проводниках за счет теплового хаотического движения носителей заряда;

6) дробовой шум в полупроводниках, обусловленный случайным характером процесса преодоления носителями потенциального барьера;

7) фликкер – шум, обусловленный медленными случайными флуктуациями физико-химического состояния отдельных областей материалов электронных устройств и т. д.

Внешние факторы

1) внешние электрические и магнитные поля;

2) электромагнитные бури;

3) помехи, связанные с работой промышленности и транспорта;

4) вибрации;

5) влияние космических лучей, тепловое излучение окружающих объектов;

6) колебания температуры, давления, влажности воздуха;

7) запыленность воздуха и т. д.

Влияние (наличие) случайных факторов приводит к одной из ситуаций, приведенных на рис. 2.2:

С ледовательно, предположение о детерминированном характере физической системы и описание ее детерминированной математической моделью является идеализацией реальной системы. Фактически имеем ситуацию, изображенную на рис. 2.3.

Детерминированная модель допустима в следующих случаях:

1) влияние случайных факторов столь незначительно, что пренебрежение ими не приведет к ощутимому искажению результатов моделирования.

2) детерминированная математическая модель отображает реальные физические процессы в усредненном смысле.

В тех задачах, где не требуется высокой точности результатов моделирования, предпочтение отдается детерминированной модели. Это объясняется тем, что реализация и анализ детерминированной математической модели много проще, чем стохастической.

Детерминированная модель недопустима в следующих ситуациях: случайные процессы ω(t) соизмеримы с детерминированными x(t). Результаты, полученные с помощью детерминированной математической модели, будут неадекватными реальным процессам. Это относится к системам радиолокации, к системам наведения и управления летательными аппаратами, к системам связи, телевидению, к системам навигации, к любым системам, работающим со слабыми сигналами, в электронных устройствах контроля, в прецизионных измерительных устройствах и т. д.

В математическом моделировании случайный процесс часто рассматривают как случайную функцию времени, мгновенные значения которой являются случайными величинами.

2.3. Суть стохастической модели

Стохастическая математическая модель устанавливает вероятностные соотношения между входом и выходом системы . Такая модель позволяет сделать статистические выводы о некоторых вероятностных характеристиках исследуемого процесса y(t):

1) математическое ожидание (среднее значение):

2) дисперсия (мера рассеивания значений случайного процесса y(t) относительно его среднего значения):

3) среднее квадратичное отклонение:

(2.3)

4) корреляционная функция (характеризует степень зависимости – корреляции – между значениями процесса y(t), отстоящими друг от друга на время τ):

5) спектральная плотность случайного процесса y(t) описывает его частотные свойства:

(2.5)

преобразование Фурье.

Стохастическаямодель формируется на основе стохастического дифференциального либо стохастического разностного уравнения.

Различают три типа стохастических дифференциальных уравнений: со случайными параметрами, со случайными начальными условиями, со случайным входным процессом (случайной правой частью). Приведем пример стохастического дифференциального уравнения третьего типа:

, (2.6)

где
аддитивный случайный процесс – входной шум.

В нелинейных системах присутствуют мультипликативные шумы .

Анализ стохастических моделей требует использования довольно сложного математического аппарата, особенно для нелинейных систем.

2.4. Понятие типовой модели случайного процесса. Нормальный (гауссовский) случайный процесс

При разработке стохастической модели важное значение имеет определение характера случайного процесса
. Случайный процесс может быть описан набором (последовательностью) функций распределения – одномерной, двумерной, … , n-мерной или соответствующими плотностями распределения вероятности. В большинстве практических задач ограничиваются определением одномерного и двумерного законов распределения.

В некоторых задачах характер распределения
априорно известен.

В большинстве случаев, когда случайный процесс
представляет собой результат воздействия на физическую систему совокупности значительного числа независимых случайных факторов, полагают, что
обладает свойствами нормального (гауссовского) закона распределения . В этом случае говорят, что случайный процесс
заменяется его типовой моделью – гауссовским случайным процессом. Одномерная плотность распределения вероятности нормального (гауссовского)случайного процесса приведена на рис. 2.4.

Нормальное (гауссовское) распределение случайного процесса обладает следующими свойствами .

1. Значительное количество случайных процессов в природе подчиняются нормальному (гауссовскому) закону распределения.

2. Возможность достаточно строго определить (доказать) нормальный характер случайного процесса.

3. При воздействии на физическую систему совокупности случайных факторов с различными законами распределения их суммарный эффект подчиняется нормальному закону распределения (центральная предельная теорема ).

4. При прохождении через линейную систему нормальный процесс сохраняет свои свойства в отличие от других случайных процессов.

5. Гауссовский случайный процесс может быть полностью описан с помощью двух характеристик – математического ожидания и дисперсии.

В процессе моделирования часто возникает задача – определить характер распределения некоторой случайной величины x по результатам её многократных измерений (наблюдений)
. Для этого составляют гистограмму – ступенчатый график, позволяющий по результатам измерения случайной величины оценить её плотность распределения вероятности.

При построении гистограммы диапазон значений случайной величины
разбивают на некоторое количество интервалов, а затем подсчитывают частоту (процент) попадания данных в каждый интервал. Таким образом, гистограмма отображает частоту попадания значений случайной величины в каждый из интервалов. Если аппроксимировать построенную гистограмму непрерывной аналитической функцией, то эта функция может рассматриваться как статистическая оценка неизвестной теоретической плотности распределения вероятности.

При формировании непрерывных стохастических моделей используется понятие «случайный процесс». Разработчики разностных стохастических моделей оперируют понятием «случайная последовательность».

Особую роль в теории стохастического моделирования играют марковские случайные последовательности. Для них справедливо следующее соотношение для условной плотности вероятности:

Из него следует, что вероятностный закон, описывающий поведение процесса в момент времени , зависит только от предыдущего состояния процесса в момент времени
и абсолютно не зависит от его поведения в прошлом (т. е. в моменты времени
).

Перечисленные выше внутренние и внешние случайные факторы (шумы) представляют собой случайные процессы различных классов. Другими примерами случайных процессов являются турбулентные течения жидкостей и газов, изменение нагрузки энергосистемы, питающей большое количество потребителей, распространение радиоволн при наличии случайных замираний радиосигналов, изменение координат частицы в броуновском движении, процессы отказов аппаратуры, поступления заявок на обслуживание, распределение числа частиц в малом объеме коллоидного раствора, задающее воздействие в радиолокационных следящих системах, процесс термоэлектронной эмиссии с поверхности металла и т. д.

Стохастические модели описывают случайные процессы или ситуации, при этом подразумевается, что случайность тех или иных явлений выражается в терминах вероятности. Так же, как и детерминированные, стохастические модели бывают дискретные и непрерывные.

      1. Непрерывно-стохастические модели

Основной схемой формализованного описания систем, для которых характерны

1) непрерывный характер изменения времени и

2) наличие случайностей в поведении,

служит аппарат систем массового обслуживания. То есть это план математических схем, разработанных для формализации процессов функционирования систем, которые являются процессами обслуживания. Именно для таких систем характерны стохастический характер функционирования (случайное появление заявок на обслуживание), завершение обслуживания в случайные моменты времени, наличие входного и выходного потока заявок, наличие приборов обслуживания, поток событий, существование очереди на обслуживание, определение некоторого порядка обслуживания и т.п.

Как видно из описания моделей такого рода, непрерывно-стахостические модели нам не подходят.

      1. Дискретно-стохастические модели

Данный тип моделей подходит для тех объектов, которые обладают следующими характеристиками:

    время в них дискретно

    они проявляют статически закономерное случайное поведение.

По данному определению наша модель полностью подходит под описание дискретно-стохастических моделей: по условию время у нас дискретно и мы сделали вывод, что в модели присутствуют случайности. Модели систем такого рода могут быть построены на основе двух схем формализованного описания:

Конечно-разностные уравнения, среди переменных которых используют функции, задающие случайные процессы

Вероятностные автоматы

“Вероятностным автоматом называется дискретный прелбразователь информации, имеющий более одного состояния, функционирование которого в каждом такте зависит только от состояния памяти в нем и может быть описано статически” 3

Задание вероятностных автоматов осуществляется таблично или с помощью графов, но их использование на практике возможно лишь путем реализации имитационной модели на ЭВМ (за исключением небольших и несложных моделях, при которых возможны и аналитические расчеты).

Проверим возможность применения вероятностных автоматов к нашей модели:

Случайности в нашей модели есть, но представляется ли возможным вычислить закон распределения?

1.В случае случайной цены?

Да, это равномерное распределение и вероятности всех состояний при определении цены равны.

    В случае случайного распределения непроданной продукции?

Это опять равномерное распределение и вероятности найти можно.

Посмотрим, какие входные состояния может принимать система...Оказывается таких состояний бесконечно много, следовательно, вероятностный автомат построить нельзя. А если сделать ограничения на объем выпуска? Это множество будет конечным и вероятностный автомат можно будет построить, но полученная модель, как и в случае предположения о детерминированности системы, будет плохо отражать реальность. Поэтому откажемся от построения вероятностного автомата.

Наиболее удобным в случае дискретно-стохастической схемы формализованного описания представляется решение задачи с помощью конечно-разностных уравнений.

Стохастическая модель описывает ситуацию, когда присутствует неопределенность. Другими словами, процесс характеризуется некоторой степенью случайности. Само прилагательное «стохастический» происходит от греческого слова «угадывать». Поскольку неопределенность является ключевой характеристикой повседневной жизни, то такая модель может описывать все что угодно.

Однако каждый раз, когда мы ее применяем, будет получаться разный результат. Поэтому чаще используются детерминированные модели. Хотя они и не являются максимально приближенными к реальному положению вещей, однако всегда дают одинаковый результат и позволяют облегчить понимание ситуации, упрощают ее, вводя комплекс математических уравнений.

Основные признаки

Стохастическая модель всегда включает одну или несколько случайных величин. Она стремится отразить реальную жизнь во всех ее проявлениях. В отличие от стохастическая не имеет цели все упростить и свести к известным величинам. Поэтому неопределенность является ее ключевой характеристикой. Стохастические модели подходят для описания чего угодно, но все они имеют следующие общие признаки:

  • Любая стохастическая модель отражает все аспекты проблемы, для изучения которой создана.
  • Исход каждого из явлений является неопределенным. Поэтому модель включает вероятности. От точности их расчета зависит правильность общих результатов.
  • Эти вероятности можно использовать для прогнозирования или описания самих процессов.

Детерминированные и стохастические модели

Для некоторых жизнь представляется чередой для других - процессов, в которых причина обуславливает следствие. На самом же деле для нее характерна неопределенность, но не всегда и не во всем. Поэтому иногда трудно найти четкие различия между стохастическими и детерминированными моделями. Вероятности являются достаточно субъективным показателем.

Например, рассмотрим ситуацию с подбрасыванием монетки. На первый взгляд кажется, что вероятность того, что выпадет «решка», составляет 50%. Поэтому нужно использовать детерминированную модель. Однако на деле оказывается, что многое зависит от ловкости рук игроков и совершенства балансировки монетки. Это означает, что нужно использовать стохастическую модель. Всегда есть параметры, которые мы не знаем. В реальной жизни причина всегда обуславливает следствие, но существует и некоторая степень неопределенности. Выбор между использованием детерминированной и стохастической моделей зависит от того, чем мы готовы поступиться - простотой анализа или реалистичностью.

В теории хаоса

В последнее время понятие о том, какая модель называется стохастической, стало еще более размытым. Это связано с развитием так называемой теории хаоса. Она описывает детерминированные модели, которые могут давать разные результаты при незначительном изменении исходных параметров. Это похоже на введение в расчет неопределенности. Многие ученые даже допустили, что это уже и есть стохастическая модель.

Лотар Брейер изящно объяснил все с помощью поэтических образов. Он писал: «Горный ручеек, бьющееся сердце, эпидемия оспы, столб восходящего дыма - все это является примером динамического феномена, который, как кажется, иногда характеризуется случайностью. В реальности же такие процессы всегда подчинены определенному порядку, который ученые и инженеры еще только начинают понимать. Это так называемый детерминированный хаос». Новая теория звучит очень правдоподобно, поэтому многие современные ученые являются ее сторонниками. Однако она все еще остается мало разработанной, и ее достаточно сложно применить в статистических расчетах. Поэтому зачастую используются стохастические или детерминированные модели.

Построение

Стохастическая начинается с выбора пространства элементарных исходов. Так в статистике называют перечень возможных результатов изучаемого процесса или события. Затем исследователь определяет вероятность каждого из элементарных исходов. Обычно это делается на основе определенной методики.

Однако вероятности все равно являются достаточно субъективным параметром. Затем исследователь определяет, какие события представляются наиболее интересными для решения проблемы. После этого он просто определяет их вероятность.

Пример

Рассмотрим процесс построения самой простой стохастической модели. Предположим, мы кидаем кубик. Если выпадет «шесть» или «один», то наш выигрыш составит десять долларов. Процесс построения стохастической модели в этом случае будет выглядеть следующим образом:

  • Определим пространство элементарных исходов. У кубика шесть граней, поэтому могут выпасть «один», «два», «три», «четыре», «пять» и «шесть».
  • Вероятность каждого из исходов будет равна 1/6, сколько бы мы ни подбрасывали кубик.
  • Теперь нужно определить интересующие нас исходы. Это выпадение грани с цифрой «шесть» или «один».
  • Наконец, мы может определить вероятность интересующего нас события. Она составляет 1/3. Мы суммируем вероятности обоих интересующих нас элементарных событий: 1/6 + 1/6 = 2/6 = 1/3.

Концепция и результат

Стохастическое моделирование часто используется в азартных играх. Но незаменимо оно и в экономическом прогнозировании, так как позволяют глубже, чем детерминированные, понять ситуацию. Стохастические модели в экономике часто используются при принятии инвестиционных решений. Они позволяют сделать предположения о рентабельности вложений в определенные активы или их группы.

Моделирование делает финансовое планирование более эффективным. С его помощью инвесторы и трейдеры оптимизируют распределение своих активов. Использование стохастического моделирования всегда имеет преимущества в долгосрочной перспективе. В некоторых отраслях отказ или неумение его применять может даже привести к банкротству предприятия. Это связано с тем, что в реальной жизни новые важные параметры появляются ежедневно, и если их не может иметь катастрофические последствия.