Как работает pon. Модемы для подключения PON от Ростелекома. Технология предусматривает постоянное пополнение ряда дополнительных услуг

Технология GEPON

В данном материале пойдет речь о технологии и оборудовании для организации пассивных оптических сетей - Passive Optical Network, PON. Основными отличиями PON от классических оптических каналов связи являются использование для агрегации трафика пассивного оборудования - оптических сплиттеров - и высокая плотность портов.

Не секрет, что требования потребителей к скорости доставки информации из Интернет растут по экспоненте. Сегодня в крупных городах 10 Мбит/с являются совершенно обычным делом. Причины этого процесса остаются неизменными уже давно - передача голоса и видео, мультимедиа, телевидение (в последнее время также и в версии высокого разрешения). Только вот битрейты постоянно возрастают.

Существенную часть затрат любого провайдерского проекта несет кабельная инфраструктура. Причем здесь учитывается не только стоимость кабеля, но и его прокладки, которая в случае работы в уже существующей инфраструктуре может быть очень велика. И конечно хочется чтобы вложения работали долго, не требовали частых обновлений и имели хороший запас по нужным параметрам. С этой точки зрения оптические каналы связи сегодня это наиболее производительный и «дальнобойный» способ обеспечения сетевого соединения устройств. При этом классическая архитектура предполагает топологию «точка-точка», когда каждая линия имеет свои выделенные порты с каждой стороны, а при необходимости создания «ответвлений» требуется установка активного оборудования в узле. Так что наиболее удачно она может использоваться для одиночных линий большой протяженности.

Однако в некоторых ситуациях более удобной может оказаться древовидная топология, которая интересна с точки зрения масштабируемости и сниженной общей длины прокладываемых кабелей. Как раз для подобных проектов и подходит PON. В России сети этого типа появилась уже достаточно давно, более пяти лет назад.

А рост числа подключенных пользователей и старт первых российских проектов класса волокно в каждый дом (Fiber To The Home, FTTH), основанных на PON, показывает, что технология прижилась и у нас.

Структура сети PON

Сеть PON состоит из нескольких элементов - коммутатора на узле связи, линий связи с пассивными сплиттерами в узлах сети и модемов на стороне абонентов. К каждому модему поступают все пакеты от коммутатора, а во время передачи используется временное мультиплексирование кадров.

Передача данных в прямом канале


Передача данных в обрантом канале

Компания ZyXEL предлагает сегодня оборудование стандарта EPON (IEEE 802.3ah), называемого также GEPON.

В настоящий момент оборудование участвует в нескольких проектах, а также в тестированиях у провайдеров по всей России. Именно о нем и пойдет дальше речь. Отметим что другие стандарты рассматриваемого типа сетей отличаются скоростными и другими техническими характеристиками.

Коммутатор позволяет по одному волокну (одному порту) подключить до 32 или даже 64 абонентов. Общая скорость передачи данных (которая делится между абонентами) составляет 1,25 Гбит/с. Дальнейшее развитие EPON уже в ближайшие годы предлагает также переход на скорости 10/1 Гигабит/с и 10/10 Гигабит/с. В следующем году ожидается принятие рабочей версии стандарта 10G EPON, а уже в 2010 году могут стартовать первые пилотные проекты.

C задержкой в два-три года планируется переход на 10-гигабитные скорости и технологии GPON.

Для приема и передачи используются лазеры с разной длиной волны - 1490 нм для передачи и 1310 для приема. При необходимости возможно добавление в канал и аналоговых кабельных телевизионных каналов (100 и более), которые модулируются лазером на 1550 нм. В зависимости от конкретной схемы сети и использованного оборудования, общая протяженность канала может составлять до 20 км.


Мультисервисная сеть на базе технологии GEPON

Кабель прокладывается от порта коммутатора в виде дерева. Сплиттеры, устанавливаемые в узлах, чрезвычайно неприхотливы - не требуют электропитания, настройки и управления, термошкафов, недороги и очень компактны. Это позволяет размещать их, например, в уже имеющихся телефонных распределительных шкафах.


Сплиттер

Простейшие оконечные устройства представляют собой конвертеры оптика-кабель со встроенным фильтром MAC-адресов. В случае использования телевидения, в модем устанавливается еще один приемник, а на телевизор выводится обычный высокочастный кабель.

Для защиты информации возможно использование шифрования (AES128) всех передаваемых пакетов. Технология не допускает прямого общения отдельных абонентов, находящихся на одном порту коммутатора - данные от одного абонента могут попасть к другому только через GEPON-коммутатор, который ретранслирует потоки данных восходящего потока на длине волны 1310 нм в нисходящий поток на длине 1490 нм. Дополнительным плюсом с точки зрения безопасности является использование на линии исключительно пассивного оборудования, затрудняющего перехват.

Из положительных сторон PON нужно отметить:

  • минимальное использование активного оборудования;
  • минимизация кабельной инфраструктуры;
  • низкая стоимость обслуживания;
  • возможность интеграции с кабельным телевидением;
  • хорошая масштабируемость;
  • высокая плотность абонентских портов.

В тоже время при рассмотрении технологии нужно учесть и ее особенности, особенно в сравнении с линиями «точка-точка»: разделяемая между абонентами полоса пропускания, общая среда может не подойти клиенту с точки зрения безопасности, пассивные сплиттеры затрудняют диагностику оптической линии, возможно влияние неисправности оборудования одного абонента на работу остальных, меньшая выгода в случае реализации на этапе строительства.

Оборудование

Линейка продуктов GEPON у ZyXEL состоит из трех коммутаторов и трех модемов. Младшая модель коммутатора - - имеет восемь портов GEPON и восемь соответствующих им Gigabit Ethernet (обратите внимание, что именно гигабитных, устройства с меньшей скоростью к ним подключить нельзя). К каждому оптическому порту можно подключить до 32-х модемов в итоге получив 256 абонентов на устройство. Все коннекторы расположены на лицевой стороне устройства - 8xPON, 8xGigabit, консольный, 10/100BaseT внесетевого управления и питание. Здесь же есть и кнопка сброса устройства. Все порты имеют набор индикаторов для определения текущего статуса. У есть встроенный гигабитный L2+ коммутатор (неблокируемая коммутация с пропускной способностью 24 Гбит/с, скорость коммутации кадров 17,8 млн. пак/с) и четыре совмещенных порта 1000Base-T/SFP. Такой вариант можно использовать для резервирования канала - при одновременном подключении двух разъемов (SC и RJ45) работает оптика, а в случае аварии в оптическом канале происходит автоматическое переключение на медь. Питание и консольный порт у этой модификации находятся на задней панели. Данные модели выполнены в стандартном 1U корпусе и рекомендуются для использования в быстрорастущих сетях. Самой производительной моделью является модульный . В его 4,5U корпусе предусмотрено место для установки до шестнадцати OLC-2301. Каждый такой линейный модуль имеет порт GEPON и совмещенный порт 1000Base-T/SFP. В шасси также устанавливается управляющий модуль и блок питания с двойным резервированием. Линейный модули допускают горячую замену, что положительно сказывается на удобстве обслуживания сети и надежности предоставления услуг. Максимально OLT-2300 может поддерживать 512 абонентов. Все оптические модули коммутаторов рассчитаны на дальность работы 20 км.


OLT-1308

Последние обновления прошивок моделей OLT-1308/OLT-1308H позволяют работать на одном канале не 32, а 64 абонентам, что существенно снижает стоимость одного подключения. Для OLC-2301 такой возможности пока нет.


Шасси OLT-2300

Все GEPON-коммутаторы поддерживают протоколы STP/RSTP и механизмы приоритезации трафика и организации виртуальных сетей (включая Port Based и 802.1Q). Эффективность многоадресных рассылок обеспечивается поддержкой IGMP v.2, IGMP proxy, IGMP snooping и MVR. Для управления предусмотрены порты RS-232 и 10/100Base-TX. Настраивать коммутаторы можно через Web-интерфейс (поддерживается SSL, предусмотрена установка до пяти аккаунтов, примеры скриншотов - , , ), telnet, SSH, FTP или консольный порт. Номера портов всех сервисов можно изменить. Возможно ограничение доступа по IP-адресам. Web-интерфейс имеет встроенную систему помощи.

Устройство автоматически находят все подключенные абонентские модемы и позволяет назначить им специфические профили. Они включают в себя настройки скорости, фильтрации, VLAN, приоритетов и другие параметры. Допускается использование протокола аутентификации 802.1x.

Коммутаторы также позволяют следить за физическим состоянием - проверяются температуры, скорости вращения вентиляторов, напряжения. Для больших сетей будет полезной поддержка коммутаторами проколола SNMP и совместимость с EMS системой управления NetAtlas. Кроме того, возможно объединение устройство в кластеры для общего управления.

В настоящий момент моделей со встроенными инжекторами КТВ у ZyXEL нет. Впрочем, для микширования сигнала ТВ в оптический канал можно использовать внешние сплиттеры и медиаконвертеры коаксиал/оптика.




ONU-631HA

Первой моделью абонентского GEPON-модема является . Он работает в режиме моста, прост в обслуживании и управляется исключительно со стороны провайдера по специальному протоколу. Для пользователя он предлагает стандартный порт Gigabit Ethernet. Предусмотрено две модификации модемов - с индексами -11 и -12. Первая работает на расстояниях до 10 км, а вторая - до 20 км. Корпус выполнен из темного пластика, на передней панели есть несколько индикаторов (питание, PON, LAN, скорость LAN, дуплекс). На задней стороне расположены два сетевых порта (оптический и медный) и вход блока питания (12 В 1,5 А). Данная модель позиционируется для подключения корпоративных абонентов и выносов операторской сети.




ONU-634HA

Вторая модель более интересна для подключения домашних пользователей - имеет встроенный централизованно управляемый 4-портовый коммутатор с привязкой VLAN 802.1Q к портам Fast Ethernet. Как и 631-й она полностью настраивается со стороны провайдера, что сокращает затраты на обслуживание. Также сейчас существуют семплы ONU-634FA - четыре сетевых порта и выход кабельного телевидения, позволяющий напрямую подключить к GEPON-модему обычный телевизор.




ONU-634FA

Рекомендованные цены на оборудование GEPON
Модель Стоимость ($) Стоимость на абонента ($)
ONU-631HA-11/12 372/454 372/454
ONU-634HA-11/12 388/502 388/502
OLT-1308 23 939 47
OLT-1308H 23 283 46
OLT-2300M/OLC-2301HA-12 1 317/2 670 90 (на 512 абонентов)

Для построения сети также потребуются сплиттеры (примерная стоимость - от 400 руб за 1×2 до 4000 руб за 1×8, существуют и модели 1×32), оптический одномодовый кабель (стоимость сравнялась с ценой кабеля UTP: цены на одволоконный кабель начинаются с 7-8 рублей за метр) и коннекторы (от 100&ndsah;140 рублей за одно соединение).

Тестирование описанного оборудования в составе коммутатора OLT-1308 и модемов ONU-631A проводилось на тестовой площадке компании ZyXEL с использованием тестового пакета Ixia Chariot. Результаты при одновременной работе одного, двух и трех клиентов приводятся в таблице (пакеты максимального размера, Мбит/с). Модемы подключались к одному из портов коммутатора через один сплиттер. Видно, что в случае максимальной нагрузки, скорости равномерно распределяются по всем клиентам. Отметим и высокую эффективность передачи данных, включая режим работы нескольких клинетов - суммарная скорость практически совпадает с максимально возможной.

В целом можно отметить, что технология не сложна в настройке и эксплуатации и работает согласно спецификациям. Скорости соответствуют знакомым по медным гигабитным сетям.

Выводы

Технология GEPON может успешно применяться для организации оптических каналов каналов связи до абонента и особенно эффективна в случае наличия ограничений на прокладку кабелей и установку активного оборудования на линии. Эффективность данного решения зависит от многих факторов и однозначно сказать, что это лучший вариант конечно нельзя, все определяется конкретными требованиями заказчика. Тем не менее, произведенные оценки позволяют сделать вывод, что уже сегодня в некоторых случаях себестоимость подключения по оптике домашних абонентов может не превышать 500 долларов.

Что касается описанного оборудования, то компания ZyXEL предлагает сегодня полную линейку GEPON-устройств, позволяющую создавать оптические сети любого масштаба со всеми необходимыми системами управления и технологиями повышения надежности.

В современном мире в сфере цифровых коммуникаций огромную популярность завоевала GPON технология. Она считается наиболее перспективной во всем мире, ее развитие в таких странах, как США, Япония, Корея, и в Евросоюзе было стремительным. Во многих городах России количество абонентов сети исчисляется сотнями тысяч. Что такое GPON технологии? В данной статье мы попытаемся найти ответ на этот вопрос.

GPON технология: назначение и технические характеристики

Расшифровывается эта аббревиатура как гигабайтные пассивные оптические системы. GigabitPON (GPON) - технология, которая подразумевает построение широкополосных сетей мультисервисного доступа. Она предоставляет по оптическому кабелю с гарантированным качеством различные услуги: интернет, телевидение и телефонию. GPON технология предусматривает проведение оптоволоконного кабеля прямо в квартиру или частный дом, это гарантирует постоянную высокую скорость подключения к сети интернет. В результате абонент получает весь потенциал оптоволоконного кабеля, в отличие от технологии ADSL, при которой канал выделяется на один многоквартирный дом и делится между всеми пользователями. GPON оборудование позволяет обеспечить скорость доступа к сети интернет от 10 Мбит/с до 2,5 Гбит/с. Для подключения абонента к GPON необходимо установить модем ONT (Optical Network Terminal), который имеет встроенный Wi-Fi, что позволяет заходить в интернет с любого устройства. Цифровая телефония по GPON технологии позволяет подключить несколько телефонных номеров. Также доступны дополнительные услуги: телеметрия, видеонаблюдение, охранно-пожарная сигнализация.

Достоинства GPON технологии

К преимуществам данной технологии относятся следующие:

Оптоволокно заводится непосредственно к абоненту;

Канал имеет высокую пропускную способность;

Возможность одновременного подключения с одного устройства несколько услуг;

Отсутствует промежуточное оборудование на участке от абонента до АТС (свитчи и прочее);

В оптоволоконном кабеле нет электричества, в результате ему не страшно воздействие влаги, а для пользователя не существует опасности удара электрическим током.

Недостатки

К минусам GPON технологии можно отнести только то, что оптоволоконный кабель довольно чувствителен к перегибам, поэтому категорически не рекомендуется прокладывать его по квартире, укладывать в плинтусы. В таком случае кабель может сломаться либо снизится его пропускная способность. Проблему могут создать и домашние животные, которые прямо-таки неравнодушны к GPON технологиям.

Заключение

Услуги GPON технологии имеют широкий спектр использования с точки зрения потребительских характеристик и функциональных возможностей. Эта технология удобна для пользователя, она стабильна и перспективна. Но есть один момент, который необходимо учесть будущему абоненту. По неписаным правилам модем монтируют возле отверстия, через которое затянули оптоволокно, тем самым сокращается протяженность линии. Соответственно, необходимо предусмотреть наличие розетки 220 В рядом с установкой оптического терминала.

Это связано с требованиями новых услуг и "тяжелых" приложений, которые могут полноценно функционировать только с подключением PON от Ростелеком. Именно поэтому было необходимо введение оптоволоконных технологий, которые отвечают требованиям высокоскоростного интернета.

Даная статья состоит из нескольких пунктов:

  • Что представляет собой PON-технология
  • Особенности PON-интернета
  • Оборудование для подключения
  • Настройка модемов

PON технология от Ростелекома

Самым главным преимуществом данной технологии по сравнению с другими типами подключения является высокая передачи данных и, как следствие, отзывчивость сетей. Поэтому PON-подключение является оптимальным для подсоединения к интернету крупных кокомпаний.

В настоящее время требования к скорости интернета достигают 100 Мбит/с, а в скором будущем приблизятся к 1 Гбит/с. Поддерживать такие высокие показатели способны только оптические кабели. Особенно это касается больших расстояний, которые, конечно же, существуют между провайдером и пользователем.

Для поставщиков услуг уже сейчас предоставляется полоса пропускания FTTH (Fiber to the Home), которая проводится к дому. Такими образом, новые постройки будут служить основой сетей доступа и смогут функционировать на протяжении многих лет. Проведение сетей доступа FTTH далеко не дешевый процесс, который требует не только трудоемких строительных работ, но и значительных финансовых затрат.

Тем не менее, развитие технологии разделения сигналов по длине волны (WDM), использующей одно волокно для входящего и исходящего трафика, в значительной степени улучшило ситуацию. Первые из сетей FTTH уже перешли к более новому стандарту, где одиночное волокно соединяется с пассивным оптическим разделителем, который в свою очередь распространяет сигнал для нескольких абонентов.

Именно этот стандарт и стал называться PON-технологией, которую сейчас активно применяет Ростелеком. Благодаря этой технологи, сеть может поддерживать расщепление сигнала в соотношении 1:64 из одного волокна. Кроме того, PON-технологии Ростелеком позволяют абонентам использовать без применения IP-приставок.

Преимущества интернета по технологии PON от Ростелекома

Наиболее значимым преимуществом PON интернета от Ростелеком является то, что при помощи недорогих оптических разделителей общее оптоволокно обеспечивает сетью множество пользователей. Но следует помнить, что такие разделители поддерживают отзывчивость сети при количестве пользователей до 64. Таким образом, эта технология вызывает интерес не только у абонентов, но и поставщиков услуг, которые желают заменить несколько устаревшие медные сети.


Особеностями PON сетей, которые можно назвать ещё и плюсами, являются:

  • отсутствие электромагнитных помех, так как нет необходимости использовать активное оборудование непосредственно в сети доступа;
  • уменьшение волокна и оборудования в центральном офисе.

PON оборудование от Ростелеком обеспечивает большую пропускную способность и поддерживает двойной коэффициент распределения. Это значит, что с 64-полосным распределением каждый пользователь получит довольно большую пропускную способность соединения, около 35 Мбит/с. В случае использования провайдером более низких коэффицентов распределения, к примеру, 16 или 32, абоненты получат еще большую пропускную способность. Благодаря эффективному использованию пропускной способности стандарта PON абонентам предоставляется большая скорость передачи данных. Кроме того, данная технология дает возможность использовать не только высокоскоростной интернет, но и мультисервисные услуги, такие, как видео, голос, данные.

Какие модемы подойдут для подключения PON от Ростелекома

Технология GPON представляет собой общеотраслевой взаимозаменяемый стандарт. Это свидетельствует о том, что модемы PON любого производителя будут корректно работать с такими устройствами, как ONT.


Это, в свою очередь, влияет на снижение стоимости оборудования и дает возможность провайдерам предлагать абонентам наиболее выгодные тарифы на услуги. Также, важно отметить, что обновленная технология на основе XGPON стандартов увеличивает производительность сетей до 10 Гбит, при этом сохраняется обратная совместимость с уже развернутыми сетями.

Как настроить оборудование

Как правило, PON оборудование от Ростелеком не нуждается в тщательной настройке, так как все необходимые параметры уже внесены провайдером. Но в некоторых моделях Wi-Fi роутера с технологией PON необходимо будет настроить конфигурации беспроводной сети и установить параметры подключения. К этим параметрам относятся логин и пароль пользователя PPPoE типа, которые Ростелеком предоставляет абоненту при заключении договора.


Если после корректного внесения всех необходимых параметров, на оборудовании горит красным индикатор PON, то рекомендуем с этой проблемой обратиться в службу технической поддержки клиентов Ростелеком.

Если у вас остались вопросы по данной технологии, то советуем посмотреть данный видеоролик.

Ростелеком и технология PON в Вологде видео


все о пассивных оптических сетях (PON)

Пару лет назад мы уже публиковали краткий ознакомительный материал о пассивных оптических сетях (PON). Однако в те времена рынок еще только присматривался к этой относительно молодой технологии – в мире только-только появлялись первые инсталляции PON-сетей и счет их шел на единицы. О приходе же PON в Беларусь тогда еще и речи не было. Сегодня ситуация изменилась: PON отлично показал себя в крупных операторских сетях по всему миру, и постепенно идет в массы, становясь доступным и привлекательным решением последней мили и для более мелких провайдеров.
В Беларуси тоже наметилась подвижка – оборудованием PON производства компании Terawave Communications занялась фирма Solo. О чем с радостью и сообщила на семинаре, проходившем в Минске 9 августа.
Вот вам и хороший повод для большого, подробного и доходчивого технического материала по PON, вступление к которому вы сейчас и читаете:)
Об оборудовании же мы расскажем в ближайших номерах, следите за рубрикой hardware.

архитектура сетей PON

Развитие сети Internet, в том числе появление новых услуг связи, способствует росту передаваемых по сети потоков данных и заставляет операторов искать пути увеличения пропускной способности транспортных сетей. При выборе решения необходимо учитывать:
- разнообразие потребностей абонентов;
- потенциал для развития сети;
- экономичность.
На развивающемся телекоммуникационном рынке опасно как принимать поспешные решения, так и дожидаться появления более современной технологии. Тем более, что на взгляд авторов такая технология уже появилась – это технология пассивных оптических сетей PON (passive optical network).
Распределительная сеть доступа PON, основанная на древовидной волоконной кабельной архитектуре с пассивными оптическими разветвителями на узлах, возможно, представляется наиболее экономичной и способной обеспечить широкополосную передачу разнообразных приложений. При этом архитектура PON обладает необходимой эффективностью наращивания как узлов сети, так и пропускной способности в зависимости от настоящих и будущих потребностей абонентов.
Строительство сетей доступа в настоящее время главным образом идет по четырем направлениям:
- сети на основе существующих медных телефонных пар и технологии xDSL;
- гибридные волоконно-коаксиальные сети (HFC);
- беспроводные сети;
- волоконно-оптические сети.
Использование постоянно совершенствующихся технологий xDSL – это самый простой и недорогой способ увеличения пропускной способности существующей кабельной системы на основе медных витых пар. Для операторов когда требуется обеспечить скорость до 1-2 Мбит/c такой путь является наиболее экономичным и оправданным. Однако, скорость передачи до десятков мегабит в секунду на существующих кабельных системах, с учетом больших расстояний (до нескольких км) и низкого качества меди, представляется непростым и достаточно дорогим решением.
Другое традиционное решение – гибридные волоконно-коаксиальные сети (HFC, Hybrid Fiber-Coaxial). Подключение множества кабельных модемов на один коаксиальный сегмент приводит к снижению средних затрат на построение инфраструктур сети в расчете на одного абонента и делает привлекательным такие решения. В целом же здесь сохраняется конструктивное ограничение по полосе пропускания.
Беспроводные сети доступа могут быть привлекательны там, где возникают технические трудности для использования кабельных инфраструктур. Беспроводная связь по своей природе не имеет альтернативы для мобильных служб. В последние годы наряду с традиционными решениями на основе радио- и оптического Ethernet доступа, все более массовой становится технология WiFi, позволяющая обеспечить общую полосу до 10 Мбит/c и в ближайшей перспективе до 50 Мбит/c.
Следует отметить, что для трех перечисленных направлений дальнейшее увеличение пропускной способности сети связано с большими трудностями, которые отсутствуют при использовании такой среды передачи, как волокно.
Таким образом, единственный путь, который позволяет заложить способность сети работать с новыми приложениями, требующими все большей скорости передачи – это прокладка оптического кабеля (ОК) от центрального офиса до дома или до корпоративного клиента. Это весьма радикальный подход. И еще 5 лет назад он считался крайне дорогим. Однако в настоящее время благодаря значительному снижению цен на оптические компоненты этот подход стал актуален. Сегодня прокладывать ОК для организации сети доступа стало выгодно и при обновлении старых, и при строительстве новых сетей доступа (последних миль). При этом имеется множество вариантов выбора волоконно-оптической технологии доступа. Наряду со ставшими традиционными решениями на основе оптических модемов, оптического Ethernet, технологии Micro SDH появились новые решения с использованием архитектуры пассивных оптических сетей PON.

основные топологии оптических сетей доступа

Существуют четыре основные топологии построения оптических сетей доступа: "точка-точка", "кольцо", "дерево с активными узлами", "дерево с пассивными узлами".

точка-точка (P2P)

Топология P2P (рис.1) не накладывает ограничения на используемую сетевую технологию. P2P может быть реализована как для любого сетевого стандарта, так и для нестандартных (proprietary) решений, например оптические модемы. С точки зрения безопасности и защиты передаваемой информации при соединении P2P обеспечивается максимальная защищенность абонентских узлов. Поскольку ОК нужно прокладывать индивидуально до абонента, этот подход является наиболее дорогим и привлекателен в основном для крупных абонентов.

Рис. 1. Топология "точка-точка".

кольцо

Кольцевая топология (рис. 2.) на основе SDH положительно зарекомендовала себя в городских телекоммуникационных сетях. Однако в сетях доступа не все обстоит также хорошо. Если при построении городской магистрали расположение узлов планируется на этапе проектирования, то в сетях доступа нельзя заранее знать где, когда и сколько абонентских узлов будет установлено. При случайном территориальном и временном подключении пользователей кольцевая топология может превратится в сильно изломанное кольцо с множеством ответвлений, подключение новых абонентов осуществляется путем разрыва кольца и вставки дополнительных сегментов. На практике часто такие петли совмещаются в одном кабеле, что приводит к появлению колец, похожих больше на ломаную – “сжатых” колец (collapsed rings), что значительно снижает надежность сети. Фактически, главное преимущество кольцевой топологии сводится к минимуму.


Рис. 2. Топология "кольцо".

дерево с активными узлами

Дерево с активными узлами (рис. 3.) – это экономичное с точки зрения использования волокна решение. Это решение хорошо вписывается в рамки стандарта Ethernet с иерархией по скоростям от центрального узла к абонентам 1000/100/10 Мбит/с (1000Base-LX, 100Base-FX, 10Base-FL). Однако в каждом узле дерева обязательно должно находиться активное устройство (применительно к IP-сетям, коммутатор или маршрутизатор). Оптические сети доступа Ethernet, преимущественно использующие данную топологию, относительно недороги. К основному недостатку следует отнести наличие на промежуточных узлах активных устройств, требующих индивидуального питания.


Рис. 3. Топология "дерево с активными узлами".

дерево с пассивным оптическим разветвлением PON (P2MP)

Решения на основе архитектуры PON (рис. 4.) используют логическую топологию "точка-многоточка" P2MP (point-to-multipoint), которая положена в основу технологии PON, к одному порту центрального узла можно подключать целый волоконно-оптический сегмент древовидной архитектуры, охватывающий десятки абонентов. При этом в промежуточных узлах дерева устанавливаются компактные, полностью пассивные оптические разветвители (сплиттеры), не требующие питания и обслуживания.


Рис. 4. Топология "Дерево с пассивным оптическим разветвлением".

Общеизвестно, что PON позволяет экономить на кабельной инфраструктуре за счет сокращения суммарной протяженности оптических волокон, так как на участке от центрального узла до разветвителя используется всего одно волокно. В меньшей степени обращают внимание на другой источник экономии – сокращение числа оптических передатчиков и приемников в центральном узле. Между тем экономия второго фактора в некоторых случаях оказывается даже более существенной. Так, по оценкам компании NTT конфигурация PON с разветвителем в центральном офисе в непосредственной близости к центральному узлу оказывается экономичнее, чем сеть точка-точка, хотя сокращение длины оптического волокна практически нет! Более того, если расстояния до абонентов не велики (как в Японии) с учетом затрат на эксплуатацию (в Японии это существенный фактор) оказывается, что PON с разветвителем в центральном офисе экономичнее, чем PON с разветвителем, приближенным к абонентским узлам.
Преимущества архитектуры PON:
- отсутствие промежуточных активных узлов; экономия волокон;
- экономия оптических приемопередатчиков в центральном узле;
- легкость подключения новых абонентов и удобство обслуживания (подключение, отключение или выход из строя одного или нескольких абонентских узлов никак не сказывается на работе остальных).
Древовидная топология P2MP позволяет оптимизировать размещение оптических разветвителей исходя из реального расположения абонентов, затрат на прокладку ОК и эксплуатацию кабельной сети.
К недостаткам можно отнести возросшую сложность технологии PON и отсутствие резервирования в простейшей топологии дерева.

прицип действия PON

Основная идея архитектуры PON – использование всего одного приемо-передающего модуля в OLT для передачи информации множеству абонентских устройств ONT и приема информации от них. Реализация этого принципа показана на рис.5.
Число абонентских узлов, подключенных к одному приемо-передающему модулю OLT, может быть настолько большим, насколько позволяет бюджет мощности и максимальная скорость приемопередающей аппаратуры. Для передачи потока информации от OLT к ONT – прямого (нисходящего) потока, как правило, используется длина волны 1550 нм. Наоборот, потоки данных от разных абонентских узлов в центральный узел, совместно образующие обратный (нисходящий) поток, передаются на длине волны 1310 нм. В OLT и ONT встроены мультиплексоры WDM, разделяющие исходящие и входящие потоки.


Рис. 5. Основные элементы архитектуры PON и принцип действия

прямой поток

Прямой поток на уровне оптических сигналов, является широковещательным. Каждый ONT, читая адресные поля, выделяет из этого общего потока предназначенную только ему часть информации. Фактически, мы имеем дело с распределенным демультиплексором.

обратный поток

Все абонентские узлы ONT ведут передачу в обратном потоке на одной и той же длине волны, используя концепцию множественного доступа с временным разделением TDMA (time division multiple access). Для того, чтобы исключить возможность пересечения сигналов от разных ONT, для каждого из них устанавливается свое индивидуальные расписания по передаче данных c учетом поправки на задержку, связанную с удалением данного ONT от OLT. Эту задачу решает протокол TDMA MAC.

стандарты PON

Первые шаги в технологии PON были предприняты 1995 году, когда влиятельная группа из семи компаний (British Telecom, France Telecom, Deutsche Telecom, NTT, KPN, Telefoniсa и Telecom Italia) создала консорциум для того, чтобы претворить в жизнь идеи множественного доступа по одному волокну. Эта неформальная организация, поддерживаемая ITU-T, получила название FSAN (full service access network). Много новых членов - как операторов, так и производителей оборудования - вошло в нее в конце 90-х годов. Целью FSAN была разработка общих рекомендаций и требований к оборудованию PON для того, чтобы производители оборудования и операторы могли сосуществовать вместе на конкурентном рынке систем доступа PON. На сегодня FSAN насчитывает 40 операторов и производителей и работает в тесном сотрудничестве с такими организациями по стандартизации, как ITU-T, ETSI и ATM форум.

Некоторые стандарты ITU-T, регламентирующие технологию xPON.

APON/BPON

В середине 90-х годов общепринятой была точка зрения, что только протокол ATM способен гарантировать приемлемое качество услуг связи QoS между конечными абонентами. Поэтому FSAN, желая обеспечить транспорт мультисервисных услуг через сеть PON, выбрал за основу технологию ATM. В результате в октябре 1998 года появился первый стандарт ITU-T G.983.1, базирующийся на транспорте ячеек ATM в дереве PON и получивший название APON (ATM PON). Далее в течение нескольких лет появляется множество новых поправок и рекомендаций в серии G.983.x (x=1–7), скорость передачи увеличивается до 622 Мбит/c. В марте 2001 года появляется рекомендация G.983.3, добавляющая новые сущности в стандарт PON:
- передачу разнообразных приложений (голоса, видео, данные) – это фактически позволило производителям добавлять соответствующие интерфейсы на OLT для подключения к магистральной сети и на ONT для подключения к абонентам;
- расширение спектрального диапазона – открывает возможность для дополнительных услуг на других длинах волн в условиях одного и того же дерева PON, например, шировещательное телевидение на третьей длине волны (triple play).
За расширенным таким образом стандартом APON закрепляется название BPON (broadband PON).
APON сегодня допускает динамическое распределение полосы DBA (dynamic bandwidth allocation) между различными приложениями и различными ONT и рассчитан на предоставление как широкополосных, так и узкополосных услуг.
Оборудование APON разных производителей поддерживает магистральные интерфейсы: SDH (STM-1), ATM (STM-1/4), Fast Ethernet, Gigabit Ethernet, видео (SDI PAL), и абонентские интерфейсы E1 (G.703), Ethernet 10/100Base-TX, телефония (FXS).
Из-за шировещательной природы прямого потока в дереве PON и потенциально существующей возможности несанкционированного доступа к данным со стороны ONT, которому эти данные не адресованы в APON предусмотрена возможность данных в прямом потоке с использованием техники шифрования с открытыми ключами. Необходимости в шифровании обратного потока нет, поскольку OLT находится на территории оператора.

Основные сведения стандарта PON G.983.1

В ноябре 2000 года комитет LMSC (LAN/MAN standards committee) IEEE создает специальную комиссию под названием “Ethernet на первой миле” (EFM, Ethernet in the first mile) 802.3ah, реализуя тем сам пожелания многих экспертов построить архитектуру сети PON, наиболее приближенную к широко распространенным в настоящее время сетям Ethernet. Параллельно идет формирование альянса EFMA (Ethernet in the first mile alliance), который создается в декабре 2001 г. Фактически альянс EFMA и комиссия EFM дополняют друг друга и тесно работают над стандартом. Если EFM концентрируется на технических вопросах и разработке стандарта в рамках IEEE, то EFMA больше изучает индустриальные и коммерческие аспекты использования новой технологии. Цель совместной работы – достижение консенсуса между операторами и производителями оборудования и выработка стандарта IEEE 802.3ah, полностью совместимого с разрабатываемым стандартом магистрального пакетного кольца IEEE 802.17.
Комиссия EFM 802.3ah должна стандартизировать три разновидности решения для сети доступа:
EFMC (EFM copper) – решение “точка-точка” с использованием витых медных пар. На сегодняшний день работа по этому стандарту практически завершена. Из двух альтернатив, между которыми развернулась основная борьба – G.SHDSL и ADSL+ - выбор был сделан в пользу G.SHDSL.
EFMF (EFM fiber) – решение, основанное на соединении “точка-точка” по волокну. Здесь предстоит стандартизировать различные варианты: “дуплекс по одному волокну, на одинаковых длинах волн”, “дуплекс по одному волокну, на разных длинах волн”, “дуплекс по паре волокон”, новые варианты оптических приемопередатчиков. Подобные решения уже несколько лет предлагаются рядом компаний как “proprietary”. Пришло время их стандартизировать.
EFMP (EFM PON) – решение, основанное на соединении “точка-многоточка” по волокну. Это решение, являющееся по сути альтернативой APON, получило схожее название EPON.
В настоящее время разработка стандартов 802.3ah в том числе EFMP находится на завершающей стадии, а принятие ожидается уже в этом году. Аргументы в пользу технологии EPON подкрепляются ориентацией сети Internet исключительно на протокол IP и стандарты Ethernet.

GPON

Архитектуру сети доступа GPON (Gigabit PON) можно рассматривать как органичное продолжение технологии APON. При этом реализуется как увеличение полосы пропускания сети PON, так и повышение эффективности передачи разнообразных мультисервисных приложений. Стандарт GPON ITU-T Rec. G.984.3 GPON был принят в октябре 2003 года.
GPON предоставляет масштабируемую структуру кадров при скоростях передачи от 622 Мбит/с до 2,5 Гбит/c, поддерживает как симметричную битовую скорость в дереве PON для нисходящего и восходящего потоков, так и ассиметричную и базируется на стандарте ITU-T G.704.1 GFP (generic framing protocol, общий протокол кадров), обеспечивая инкапсуляцию в синхронный транспортный протокол любого типа сервиса (в том числе TDM). Исследования показывают, что даже в самом худшем случае распределения трафика и колебаний потоков утилизация полосы составляет 93% по сравнению с 71% в APON, не говоря уже о EPON.
Если в SDH деление полосы происходит статично, то GFP (generic framing protocol), сохраняя структуру кадра SDH, позволяет динамически распределять полосу.

сравнение технологий APON, EPON, GPON

В таблице представлен сравнительный анализ этих трех технологий.

Примечания:
1 – обсуждается в проекте.
2 – стандарт допускает наращивание сети до 128 ONT.
3 – допускается передача в прямом и обратном направлении на одной и той же длине волны.
4 – осуществляется на более высоких уровнях.

подробнее об APON

А теперь – немного чисто технической конкретики о том, как работают сети PON. В качестве примера взята разновидность APON.
Взаимодействие абонентского узла с центральным начинается с установления соединения. После чего происходит передача данных. Все это выполняется в соответствии с протоколом APON MAC. В процессе установления соединения запускается процедура ранжирования (ranging), которая включает в себя: ранжирование по расстоянию, ранжирование по мощности и синхронизацию. Центральный узел, словно дирижер, обеспечивает слаженную работу всех абонентских узлов – оркестрантов.

APON MAC - протокол взаимодействия центрального узла с абонентскими

Протокол MAC для систем доступа APON решает три задачи:
- исключение коллизий между передачами в обратном потоке;
- четкое, эффективное, динамическое деление полосы обратного потока;
- поддержание наилучшего согласования для транспорта приложений, инициированных конечными пользователями.
Протокол APON MAC основан на механизме запрос/разрешение. Основная идея состоит в отправке со стороны ONT запросов на требуемую полосу. На основании знаний о том, как загружен обратный поток, и какие услуги a priori закреплены за тем или иным ONT, OLT принимает решение по обработке эти запросов.

процедуры ранжирования

В основе инициализации сети PON лежат три процедуры: определение расстояний от OLT до разных ONT (distance ranging); синхронизация всех ONT (clock ranging); и определение при приеме на OLT интенсивностей оптических сигналов от разных ONT (power ranging).

ранжирование по расстоянию

Ранжирование по расстоянию (distance ranging) – определение временной задержки, связанной с удалением ONT от OLT – выполняется на этапе регистрации абонентских узлов, и требуется для того, чтобы обеспечить безколлизионный транспорт и создать единую синхронизацию в обратном потоке.
Сначала администратор сети заносит в OLT данные о новом ONT, его серийный номер, параметры предоставляемых ONT услуг. Затем после физического подключения к сети PON этого абонентского узла и включения питания на нем, центральный узел начинает процесс ранжирования. Ранжирование с ONT, который прописан в реестре OLT происходит каждый раз при включении ONT. При выключении и включении питания на OLT ранжирование происходит со всеми зарегистрированными ONT.
ОLT, посылая сигнал ранжируемому ONT, слушает отклик от него и на основании этого вычисляет временную задержку на двойном пробеге RTT (round trip time), затем в прямом потоке передает ONT вычисленное значение. На основании этого абонентский узел ONT вносит соответствующую задержку, которая предшествует началу отправки кадра в обратном потоке. Абонентские узлы, находящиеся на разном расстоянии будут вносить разные задержки. При этом одинаковой по всем абонентским узлам будет сумма вносимой аппаратной задержки и задержки распространения светового сигнала по оптическому пути от ONT к OLT.
С учетом того, что расстояния OLT-ОNT могут изменяться в больших пределах (стандарт G.983.1 определяет диапазон 0-20 км), оценим возможные вариации задержки. Если учесть, что скорость света в волокне составляет 2*105 км/c, то приросту расстояния OLT-ONT на 1 км будет соответствовать увеличение времени задержки на двойном пробеге на 10 мкс. А для расстояния 20 км RTT составит 0,2 мс. Фактически это минимальное теоретическое время, которое требуется OLT, чтобы выполнить ранжирование с одним ONT. Ранжирование по расстоянию большего числа абонентских узлов происходит последовательно и требует пропорционального возрастания суммарного времени ранжирования. В течение этого времени обратный поток не может использоваться для передачи данных другими ONT.
После того, как ранжирование по расстоянию выполнено, OLT на основании прописанных услуг для каждого ONT и с использованием протокола МАС принимает решение, какому абонентскому узлу передавать в каждом конкретном временном слоте.
Заметим, что общая задержка при отправлении кадра в обратный поток вносится не только конечным временем распространения сигнала по волокну, но и элементами электроники OLT и ONT. Задержка со стороны последних может испытывать небольшой дрейф, например вследствие колебаний температуры оборудования. По этому на этапе передачи данных OLT сообщает ONT о небольших подстройках задержки, вносимой в обратный поток – микроранжирование (micro ranging). В результате точность, с которой стабилизируются отправляемые кадры от разных ONT, составляет 2–3 бита.

ранжирование по мощности

Ранжирование по мощности (power ranging) – изменение порога дискриминации фотоприемника с целью повышения чувствительности фотоприемника или во избежании его нежелательного насыщения. Поскольку ONT удалены на разные расстояния от OLT, то и вносимые потери в оптические сигналы, при распространении по дереву PON будут разными. Это может привести к нарушению работы фотоприемников из-за слабости сигнала либо из-за перегрузки.
Возможны два варианта выхода из сложившейся ситуации – либо подстраивать мощность передатчиков ONT, либо подстраивать порог срабатывания на фотоприемнике OLT. Был выбран второй вариант как более надежный.
Подстройка порога срабатывания фотоприемника OLT происходит каждый раз при получении нового пакета ATM из обратного потока по преамбуле на основе измерения интегральной мощности в преамбуле пакета.
Подстройка по мощности также необходима на всех ONT. Она выполняется аналогичным путем, но только один раз прежде чем синхронизировать приемник на для работы с синхронным TDM потоком от OLT. Затем непрерывно подсчитывается интегральная мощность на ONT, и делается плавная подстройка порога дискриминации фотоприемника.

синхронизация

Синхронизация или ранжирование по фазе (phase ranging) необходима как для прямого, так и для обратного потока.
Абонентские узлы ONT синхронизируются вначале своей инициализации и затем все время поддерживают синхронизацию, подстраиваясь под непрерывный TDM трафика от OLT, и осуществляя, как принято называть, синхронный прием данных.
Напротив центральный узел OLT синхронизируется каждый раз по преамбуле вновь приходящего пакета ATM. Знания вычисленной на этапе ранжирования по расстоянию временной задержки со стороны ONT, отправившего этот пакет, здесь не достаточно – требуется большая точность. Метод приема данных с синхронизацией по преамбуле принято называть асинхронным. Синхронизация по преамбуле аналогична решению в технологии десятимегабитного Ethernet с размером преамбулы 64 бита (8 байт). Однако сохранить такого же размера преамбулы для относительно небольшого пакета ATM (в обратном потоке) означало бы кране неэффективное использование полосы. Для технологии APON была разработана новая методика синхронизации, основанная на методе CPA (clock phase alignment), позволяющая провести необходимую синхронизацию по получению всего трех бит! Больший размер преамбулы пакета ATM в обратном потоке был выбран постольку, поскольку преамбула также несет функцию обеспечения процедуры ранжирования по мощности.

структура кадра APON для прямого и обратного потока

Для управления механизмом запрос/разрешение, FSAN определил структуру кадра APON для прямого и обратного потока. Этот формат был стандартизирован ITU-T в рекомендации G.983.1. На рис. 6 представлен формат кадра APON для симметричного режима трафика 155/155Мбит/c. Кадр прямого потока состоит из 56 ячеек ATM по 53 байта. Кадр обратного потока состоит из 52 пакетов ATM по 56 байт и одного слота MBS общей длины также 56 байт, рассмотренного ниже.


Рис. 6. Формат кадра ITU G.983 - структура кадра прямого и обратного потока.

прямой поток

Разрешения на передачу посылаются пачками (bursts) в специальных служебных ячейках ATM – двух на один кадр, которые называются ячейками работы и обслуживания физического уровня PLOAM (physical layer operation and maintenance). Они следуют строго регулярно, чередуясь с 27 ячейками данных. В одной ячейке PLOAM размещается 26 разрешений для ONT, каждое на передачу всего одного (!) пакета ATM. Оставшиеся 54 ячейки в кадре прямого потока несут данные и не задействуются для работы механизма запрос/разрешение.

обратный поток

Обратный поток представляет совокупность пачек данных (bursts) от разных ONT. Абонентский узел может передавать данные только после получения соответствующего разрешения прочитанного из ячейки PLOAM. Пачки данных от ONT в APON передаются пакетами ATM. Единственное отличие пакета ATM от ячейки в том, что пакет имеет дополнительно преамбулу 3 байта. Таким образом длина пакета ATM 56 байт. Преамбула не нужна для ячеек в прямом потоке из-за синхронного режима приема данных, как указывалось выше. Первые два бита преамбулы не содержат оптического сигнала, что является достаточным для устранения перекрытие пакетов от разных ONT – в линии неизбежны небольшие колебания задержки при распространении сигнала.
Если принять во внимание, что разрешение на передачу необходимо для каждого пакета ATM, то суммарное число прописанных в ячейках PLOAM разрешений за продолжительное время должно соответствовать числу пакетов ATM, испущенных всеми ONT за это время. Почему в PLOAM помещается 26 разрешений? Две ячейки PLOAM могут дать разрешения на передачу 52 пакетов ATM, ровно столько, сколько их есть в кадре ATM для обратного потока.

слот MBS

Слот многократных запросов MBS (multi burst slot) в обратном потоке является служебным. Он информирует OLT о характере запросов по передаче со стороны ONT. Этот слот имеет 8 подполей или минислотов, соответствующих различным ONT (рис. 7). Если система PON рассчитана на 32 абонентских узла, то передать свои сведения о запросах на передачу все 32 ONT смогут только после четырех последовательно переданных слотов MBS, что составляет цикл. В системе из 64 ONT, цикл состоит из восьми слотов MBS. Передача одного кадра при скорости 155 Мбит/с длится 0,15 мс. На передачу всего цикла при 32 ONT потребуется 0,6 мс Другими словами, с периодичностью 0,6 мс ONT посылает служебные запросы о намерениях передавать. Запрос ONT посылает, когда в его выходном буфере сформировалась очередь для передачи. Поскольку ОNT сможет передавать только после получения разрешения в ячейке PLOAM, то чтобы оценить максимальное время с момента, кода в буфере подготовлена очередь, до момента начала передачи, следует к времени цикла 0,6 мс добавить задержку на двойном пробеге RTT (для сети с радиусом 20 км RTT составляет 0,2 мс), и получается 0,8 мс. К этому значению могут быть добавлены аппаратные задержки на OLT и ONT.


Рис. 7. Структура слота MBS.

Минислот состоит и 4-х полей: преамбулы (3 байта), аналогичной преамбуле в пакете ATM; двух полей ABR/GFR и VBR, длиной 8 и 16 бит, соответствующих двум типам запросов на полосу; поля контрольной суммы CRC (8 бит).

надежность и резервирование в APON

Слабой стороной систем доступа APON с топологией простого дерева является отсутствие резервирования. Самым неблагоприятным в этом случае мог бы быть сценарий с повреждением волокна, идущего от OLT к ближайшему разветвителю (фидерного волокна). Теряет связь весь сегмент, подключенный по этому волокну – десятки абонентских узлов, сотни абонентов остаются без сети. Среднее время ремонта (MTTR, Mean Time To Repair) может варьироваться в больших пределах от нескольких дней до нескольких недель в зависимости от оператора. В указанном случае однократного повреждения волокна наиболее отчетливо проявляется недостаток сети PON по сравнению с кольцевой топологией SDH.
Поэтому в уже в первой рекомендации G.983.1 в приложении IV обсуждался вопрос о построении защищенных систем APON. В силу специфики топологии PON, эта задача не является столь простой как в кольцевых топологиях SDH, поскольку полоса обратного потока в PON является общей и формируется множеством абонентских узлов. В рекомендациях G.983.1 предложено было изучить четыре различных топологии. Только две из них окончательно были выбраны для проработки в более поздней рекомендации G.983.5.
На рис. 8-10 показаны основные варианты построения резервных систем PON. Первое решение (рис. 8) обеспечивает частичное резервирование со стороны центрального узла. Для реализации данного решения требуется разветвитель 2xN. Центральный узел оснащается двумя оптическими модулями LT-1 и LT-2, в которых происходит терминирование двух волокон. В нормальном режиме при отсутствии повреждений волокон основной канал является активным, и по нему организуется дуплексная передача. Резервный канал – неактивный – лазерный диод на LT-2 выключен. Фотоприемник на LT-2 при этом может прослушивать обратный поток. Если повреждается идущее от центрального узла волокно основного канала, то автоматически активизируется приемо-передающая система LT-2, и на нее переключается модуль мультиплексирования, коммутации и кросс-коннекта на OLT, обеспечивая транспорт от интерфейсов магистрали. Для повышения надежности целесообразно брать фидерные волокна от разных, физически разнесенных оптических кабелей.


Рис. 8. Защищенная топология PON. Частичное резервирование со стороны центрального узла.

Частичное резервирование со стороны абонентского узла (рис. 9) позволяет повысить надежность работы абонентского узла. В этом случае требуется два оптических модуля LT-1 и LT-2 на абонентский узел. Переключение на резервный канал происходит аналогично предыдущему варианту. При резервировании абонентских узлов не обязательно подключать все абонентские узлы по резервному потоку. Различие по стоимости абонентских узлов с резервированием (два модуля LT-1 и LT-2) и без него (один модуль LT) позволяет дифференцированно предлагать услуги различным категориям абонентов.


Рис. 9. Защищенная топология PON. Частичное резервирование со стороны абонентского узла.

На рис. 10 показан вариант с полным резервированием системы PON. Система становится устойчивой как к выходу из строя приемо-передающего оборудования OLT и ONT, так и к повреждению любого участка волоконно-оптической кабельной системы. Информационные потоки на ONT генерируются одновременно обеими узлами LT-1 и LT-2 и передаются в два параллельных обратных потока. На OLT только одна версия двух копий сигналов передается дальше на магистраль. Аналогично происходит дублирование трафика в прямом потоке. При повреждении волокна или приемо-передающих интерфейсов переключение на резервный поток будет очень быстрым и не приведет к прерыванию связи.


Рис. 10. Защищенная топология PON. Полное резервирование.

Первое решение, кроме того, что оно обеспечивает только частичное резервирование, требует большого времени на реконфигурацию при повреждении волокна. Основной вклад в задержку вносит прогрев лазера на OLT (LT-2) и выполнение процедуры ранжирования. Практически трудно не выйти за пределы 50 мс, одного из требований, сформулированных в рекомендации G.983.5.
Вывод. Для рассмотренных конфигураций, предлагаемых ITU-T, практически только решение с полным резервированием удовлетворяет всем требованиям и представляется наиболее привлекательным.

Петренко И.И, Убайдуллаев Р.Р., к.ф-м.н, Телеком Транспорт.